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INTRODUCTION

Let u E C 2m [0, hj be given, let V2m - 1 be the unique Hermite interpolation
polynomial of degree 2m - 1 matching u and its first m - 1 derivatives uU)

at °and h and let e = v2m _ 1 - u be the error. Ciariet et al. [3, Theorem 9]
have obtained pointwise bounds on the error e(x) and its derivatives in terms
of U = maxO.:;x.:;h lu(2ml(x)l. Their bounds are

!

e(k)( )1 &: hk(x(h - x))m-k U
X "" k! (2m - 2k)! '

k=O, 1,... ,m; O~x~h. (1.1)

These bounds are best possible for k = °only. Later, in 1967, BirkhofT and
Priver [1] obtained, for m = 2 and m = 3, optimal error bounds on the
derivatives e(kl(x). More precisely, their results can be described by the
following

THEOREM A. Let u(x) E C4 [0, h j. Then

where

k=O,I,2,3, (1.2)

1
a O=4 24!'

VIa ---
1- 216 '

1
a 2 =12' (1.3)

Further,for u(x) E C 6 [O, hI, we have

IV(kl(X) - u(k)(x)1 ~f3 h6- k max !U(61(X)!,
5 k 0':; x':; h
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(1.4)



where
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V5
fl, = 30000 '

1
fl4=1O'

1
flz=1920'

1
fl5 = 2:'

(1.5)

Here v3(x) and v5(x) are Hermite interpolation polynomials of degree ~3

and of degree ~5, respectively.

They also noted that, for m > 3, their method, using Green's function,
seems unlikely to be useful. Analogously to using Hermite interpolation
polynomials, one may choose to approximate a given function u(x) E
ezm [0, hI by the so called Lidstone interpolation polynomial (see [4, p. 28])
L Zm _ ,(x) of degree ~2m - 1, matching u and its first m - 1 even derivatives
u(Zj) at 0 and h. It turns out that in this case we can give pointwise bounds
on the error and its derivatives in terms of u = maxO(x(h Iu(zm)(x)1 which are
also optimal. An important role in our Theorem 1 (see below) is played by
the polynomial QZm(x) (Euler polynomial) of degree 2m given by the
formula

where

Qo(x) =-1

and

m= 1,2,... , (1.6 )

(1. 7)

G,(x, t) = t(x - 1),

=x(t-1),

Clearly from (1.6}-(1.8) it follows that

Also

o~ t <x ~ 1,

O~x~t~ 1.
(1.8)

Q~;;)(O) = Q~;;)(1) = 0, p = 0, 1,... , n - 1,

Q~;,n)(l) = Q~;,n)(O) = (-It,
(2') .

Qz,; (x) = (-l)J Qzn-z/x). (1.9)
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Explicit representation of some of these polynomials is given by

x(l- x)
Qz(X) = 2! ' ( )

_x2(1-X?+X(1-X)
Q4 x - 4! '

x 3(1 - X)3 + 3x2(1- X)2 + 3x(1 - x)
Q6(X) = 6! '

)
x4(1 - X)4 + 6x3(1 - X)3 + 17x2(1 - X)2 + 17x(1 - x)

Qg(X = 8! .

We now state our first result as follows.

THEOREM 1. Let'U(x)EC 2m [0,1], let L2m_I(U,x)=L2m_t(X) be the
unique polynomial of degree <-2m - 1 satisfying the conditions

L (2j) (0) = U(2 j )(0)2m-l , L(2j) (1)=u(2j)(1)
2m-1 , j = 0, 1,..., m - 1.

(1.10)

Then,for °<- x <- 1, with u = maxo,;;x,;; I Iu(2m)(x)!,

(2j) (2j)Iu (x) - L 2m-I(X)1 <- UQ2m- 2ix), j=0,1,...,m-1, (1.11)

and

IU(2 j -I)(X) - L ~~= \)(x)[

<- u[(1- 2x) Q~m+2-2j(X) + 2Q2m+2-2j]

<-Q~m+2-2/0), j= 1,2,... ,m. (1.12)

Moreover (1.11) and (1.12) are best possible.

Note! For j = 0, (1.11) is implicitly contained in Theorem 1.1 and
Theorem 2.1 of Widder [5].

Our next aim is to give some applications of Theorem A of Birkhoff and
Priver to two point Birkhoff interpolation problems. For this purpose, letf E
C 6 [0, 1] and let H s[f, x] be the unique polynomial of degree <-5 satisfying
the conditions

i=O,I, p=0,2,3; X o = 0, Xl = 1.
(1.13)

we may call it the (0, 2, 3) interpolation polynomial with nodes °and 1.
Concerning Hs(f, x) we now state the following theorem.
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THEOREM 2. Let f, C 6 [0, I] and let H 5 If, x I satisfy (1.13). Then for

°~x~ I,

where

p = 0, 1,... ,5, (1.14)

x 3(I_x)3 + !X2(1-X)2 +1x(1-x)
fo(x) = 6! .

(1.15)

Note. If we denote cp = maxo,;;;x';;; I IfbPl(X)1 then

p = 0, 1,2,3,

where ap are defined by (1.3).
Similarly letfE C 8 [0, 1]. We denote by H 7 [f,x] the unique polynomial

of degree ~7 satisfying the conditions

p = 0, 2, 3, 4, i = 0, 1 (1.16)

with X o = 0, Xl = 1.
Concerning H 7 If, x] we shall prove the following:

THEOREM 3. Let fE C8 [0, 1] and H 7 [f, xl be the unique polynomial of
degree ~7 satisfying (1.16). Then

p = 0,1,... ,7, (1.17)

Note. If dp = maxo,;;;x,;;; I If\P)(x)l, then it can be verified that

d - (~)~
0- 1280 8!'

dp + 2 =fJp , p=O, 1,... ,5, where the fJp are defined by (1.5). We denote by
k 3 If, x I the unique polynomial of degree ~3 satisfying

640/38/3 5

k 3If, °I = f(O),

k3[f, 11 = f(1),

k3If,11=f(1),

kaf, 1] =1'(1).
(1.19)
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We shall refer to k 3[f, X] as quasi-Hermite interpolation polynomials.
Concerning k 3 [f, x], we shall prove the following

THEOREM 4. Let fE C4 [0, i], let k 3 [f,x] be the unique polynomial of
degree ~3 satisfying (1.19). Then we have,for p = 0, i, 2, 3,

(1.20)

where

(1.21)

Furthermore, these constants are best possible as can be verified by choosing

f(x) = x(i - x)(i - 2X)2
96

It seems that the following conjecture concerning (1.i) may be worth
mentioning. LetfEC2m [O,h] and V 2m - 1(X) be the unique Hermite inter
polation polynomial of degree ~2m - I matching u and its first m - I
derivatives uU) at 0 and h. Then

p = 0, I,..., (2m - I),

where

u= max lu 2m (x)l,
O<,x<,h

The above conjecture is true for m = 2, and m = 3. For other related
interesting results, see [2].

2. PRELIMINARIES

Let us denote by L 2m - 1(U, x) the interpolation polynomial of degree
~2m - I satisfying the conditions

p = 0, I,... , m - 1.

(2.1 )

The explicit formula for L 2m _ 1(x) is given by

m-l

L 2m _
1
(U,x)= '\~ [u(2i)(I)Ll;(x)+U(2i)(0)Ll;(I-x)l, (2.2)

;=0
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where
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for i ~ 1. (2.3)

Here Bn(x) denote the well known Bernoulli polynomials:

From the properties of Bernoullis polynomials it follows that

(2.4)

(2.5)

Since L 2m _1(u,x)==u(x) for u(x)E7r2m _ 1 (7r 2m - 1 denotes the class of
polynomials of degree ~2m - I) it follows from the Peano theorem that for
UE C2m IO, 1]

.1

e(x) == u(x) - L 2m _ l (u, x) = j Gm(x, t) u(2m)(t) dt, (2.7)
• 0

where Gm(x, t) is the Peano-kernel. Following Widder [5], we have

m=2,3,... , (2.8)

where G\(x, t) is defined by (1.8).

3. PROOF OF THEOREM 1

Following the notation used by Birkhoff and Priver [1], we shall denote

Now on using (2.7) we have

.1

e(2j) (x) = U(2j )(x)-Li;;{)_t(u,x) = j G~j·O)(x,t)u2m(t)dt. (3.1)
• 0
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Let us substitute u(x) = Q2m(X) (as defined by (1.6» in (3.1) and use various
properties of Q2m(X) as stated in (1.9), we then obtained

.1

Q~~)(x)= (-I)j Q2m-2/X) = (_l)m I G:;j,O)(x, t) dt. (3.2)
'0

Also from (2.8) and (1.8) it follows that (-1 Y Gn(x, t) is nonnegative in the
unit square 0 ~ x ~ 1, 0 ~ t ~ 1. Further, from (2.8) it also follows that

G(2j ,0)(X t) = G (x t)·m , m-l" G(2 j ,0)(X t) = G .(x t)
m ' m-J" (3.3 )

Therefore (_l)m- j G:;j,O)(x, t) = (_I)m-j Gm_/x, t) > 0, in the unit square
o~ x ~ 1, 0 ~ t ~ 1. Hence, on using (3.1), (3.3) it follows that

Ie(2
j
)(x)1 ~ u f IG:;j,O)(x, t)1 dt = u If G:;j,O)(x, t) dt I

= UQ2m_2/X).

This proves (1.11). Next, we turn to prove (1.12). Due to (3.3) it is enough
to prove (1.12) for j= 1. From (2.8) it follows that

x I

G~,O)(x,t)= f
o

yGm_l(y,t)dy+ L(y-I)Gm_l(y,t)dy.

Therefore

+ff(l-y)IGm- l(y,t)ldYdt. (3.4)
o x

From (3.2) we know that

(3.5)

On changing the order of integration in (3.4) and making use of (3.5) we
obtain

JI IG~'O)(x, t)1 dt ~ JX yQ2m-2(y) dy + ( (l - y) Q2m-iY) dy
o 0 'x

(3.6)
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Now, we note that (on using (1.9))

265

X2m-2(X) = - ryQ~m(Y) dy - f (1 - y) Q~m(Y) dy

= (-2x + 1) Q;m(x) + 2Q2m(X). (3.7)

Also

X;m-2(X) = (1 - 2x) Q~m(x) = (-1 + 2x) Q2m-2(X).

Since Q2m-2(X) vanishes only at x = 0 and x = 1, it follows that the critical
points of X2m-2(x) are x = 0, x = 1, x = !. Also X2m-2(1) = X2m- 2(0) and

X2m-2(1) - X2m-2(!) = ( (2y - 1) Q2m-2(y) dy > O.
• 1/2

Thus we conclude that X2m-2(x) has an absolute maximum at x = 0 and
x = 1. Therefore, from (3.6) and (2.7) it follows that

le/(x)1 <urIG~'O)(x, t)1 dt <uX2m-2(x)
o

= [(1- 2x) Q;m(x) + 2Q2m(X)]U

<uX2m-2(1).

But from (3.7) it follows that

This proves (1.12) completely.
The inequalities (1.11) and (1.12) are both best possible. To show this,

take u(x) = Q2m(x), the Euler polynomial defined by (1.6) and (1.7). In view
of (1.9), we have maxo.;;x.;;,lu 2m (x)1 = 1. Further use of (1.9) and the
definition of L 2m _ I (U(t),x) given by (1.10) shows at once that
L 2m _,[Q2m(t),X] =0. Now it is easy to verify that (1.11) is indeed best
possible pointwise. A similar argument shows that (1.12) is also best
possible. Here again we use the same choice of u(x), namely, Q2m(x).

4. PROOF OF THEOREM 2

Let IE C 6 [0, 1] and H s[I, x] be the unique polynomial of degree <5
satisfying (1.13 ). We set

e(x) = I(x) - Hsl/, x], (4.1 )
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and note that
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p=o, 2, 3. (4.2)

Thus e(x) can be looked upon as the solution of the ditTerential equation

subject to the boundary conditions

(4.3)

yIPl(O) = yIPl(1) = 0,

We may express (4.3), (4.4) as

p=o, 2, 3. (4.4 )

and

y(O) = 0, y(l) = °
(4.5)

d4X
dx 4 = Q(x),

X(O) = X(I) = X'(O) = x'(1) = 0.

From (4.5) it follows that

y(x) = f G1(x, z)x(z) dz,

(4.6)

(4.7)

YThere the G1(x, z) is Green's function defined by (1.8). Also, the solution of
(4.6) is known from the work of BirkhotT and Priver (I]. It is given by

x(x) = f Gix, t) Q(t) dt,
o

where

6G4(x, t) = (3t 2- 2t 3
) x 3 + 3(t - 2) t2x 2+ 3t2x - t3, t ~ x,

= (3t 2- 2t 3
- 1) x 3 + 3(1 - t)2 tx 2, to? x.

Therefore,

(4.8)

(4.9)

y(x) = rG(x, t) Q(t) dt = rG(x, t)jl 6l(t) dt, (4.10)
o 0
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G(x,t)=rG](x,z) G4(z, t)dz.
o

267

(4.11 )

Since G](x, z) and G4(z, t) do not change sign, it follows that G(x, t) is non
negative in the unit square 0 ~ x ~ 1, 0 ~ t ~ 1. Now, using a familiar
argument, it follows that

G(2,O)(X, t) = Gix, t)

and

(4.12 )

From the known results of [11,

I

max f [G~I,O)(X, t)[ dt = ai'
Q.(x(; 1 0

1=0,1,2,3.

1= 0, 1,2,3.

(4.13 )

(4.14)

From (4.13) and (4.14), (1.14) follows for p = 2, 3,4,5. Thus it remains to
prove (1.14) for p = 1. For this purpose we need to compute maxo<; x <; I

n[G(l,O)(x,t)ldt. On using (4.11) we obtain

G(l,O)(x, t) =ryGiY, t) dy +f' (y - 1) GiY, t) dy.
o x

Therefore

I
x I

IG(I,O)(x,t)l~ yIG 4(y,t)[dy+ f (1- y)[G4(y,t)!dy
o x

and we know

Thus we can write

But

B'(x) = x
2
(1-x?(2x-I)

4! .
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Thus O(x) has only three critical points: x = 0, x = 1, x = 1/2. Since
0(1) > 0(1/2) it follows that

1 1 3(1)2 1
max f IG(l'O)(x,t)ldt~f Y -y dy=--.

o<;x<; 1 0 0 4! 1440

This proves (1.14) for p = 1 as well. Proof of Theorem 3 is very similar to
the proof of Theorem 2 we will not give any details. Proof of Theorem 4 can
be given on the lines of Theorem A so we will not give the details.
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