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INTRODUCTION

Let u € C*™[0, k| be given, let v,,_, be the unique Hermite interpolation
polynomial of degree 2m — 1 matching u and its first m — 1 derivatives u"”
at O and A and let e =v,,,_, —u be the error. Ciarlet et al. |3, Theorem 9|
have obtained pointwise bounds on the error e(x) and its derivatives in terms
of U=maxy_,,|u*™(x). Their bounds are

R (x(h — x))" U
K 2m — 2k)

te®(x)| < k=0,1,.,m; 0<x<h (L1)

These bounds are best possible for & =0 only. Later, in 1967, Birkhoff and
Priver [1] obtained, for m =2 and m =3, optimal error bounds on the
derivatives e¥(x). More precisely, their results can be described by the
following

THEOREM A. Let u(x) € C*[0, h]. Then

() —uP @) < ayh*™t max |ux),  k=0,1,2,3. (1.2)

where
1 V3 1 1
“=gm YT BT @y (13
Further, for u(x) € C%(0, h|, we have
[0 () — u® ) < Bk Jmax [ (x)), (1.4)
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where

P :

4%’ =30000° T Toa0
(1.5)
B B=—L By =t
T 120 T I ST

Here vy(x) and vy(x) are Hermite interpolation polynomials of degree <3
and of degree <5, respectively.

They also noted that, for m > 3, their method, using Green’s function,
seems unlikely to be useful. Analogously to using Hermite interpolation
polynomials, one may choose to approximate a given function u(x)€
C*™[0, h] by the so called Lidstone interpolation polynomial (see [4, p. 28])
L,,, _,(x) of degree {2m — 1, matching u and its first m — 1 even derivatives
u® at 0 and A. It turns out that in this case we can give pointwise bounds
on the error and its derivatives in terms of # = maxg ., |u*™ (x)| which are
also optimal. An important role in our Theorem 1 (see below) is played by
the polynomial Q,,(x) (Euler polynomial) of degree 2m given by the
formula

0, (x) = — j' G,(6, ) Oy _o)dt,  m=1,2,..., (1.6)

where
Qo(x) =1 (1.7)
and
Gix,)y=1t(x—1), 0<r<xgl,
=x(t—1), 0<x<t<1. (1.8)

Clearly from (1.6)-(1.8) it follows that

(X)) = =0 a(¥),  @2a(0)=0,,(1)=0.
Also
05 0)=05P(1)=0, p=0,1.,n~1,
05"(1) = Q5°(0) = (1),
05 (x) = (=1 Q3 _5(x)- (1.9)
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Explicit representation of some of these polynomials is given by

1— (1 — %) 4 x(1 —
Qz(x)zic_(rx), Q4(x)=X( X)4?’X( x),
3 _ 3 3 2 _ 2 3x(1 —
Q6(x)=x (1 —x)" +3x (é! x)* 4 3x(l —x) ’
x4 =)+ 6x3(1 —x)* + 17x*(1 — x)* + 17x(1 — x)
Os(x) = 31 .

We now state our first result as follows.

THEOREM 1. Letu(x)€ C*™(0, 1], let L,,_,(u,x)=L,, ,(x) be the
unique polynomial of degree <{2m — 1 satisfying the conditions

L (0)=u®(©0), L ,()=u®(1), j=0,1l.,m—1L
(1.10)

Then, for 0 < x < 1, with u=max, ., |u*™(x)],

Iu(ZJ)(x)—Léf,’;)_,(X)IQUszwzj(x)’ Jj=0,1,..,m—1, (L11)
and
W)~ L)
<ul(1—2x) Q£m+2—2j(x) + 2Q2m+2—2j]
<Oimir 20,  Jj=1L2...m (1.12)

Moreover (1.11) and (1.12) are best possible.

Note! For j=0, (1.11) is implicitly contained in Theorem 1.1 and
Theorem 2.1 of Widder [5].

Our next aim is to give some applications of Theorem A of Birkhoff and
Priver to two point Birkhoff interpoiation problems. For this purpose, let / €
C®[0, 1] and let H,|f, x| be the unique polynomial of degree <5 satisfying
the conditions

HP(f, x) = P0x), i=0,1, p=0,2,3; x,=0, x; =L
(1.13)

we may call it the (0,2, 3) interpolation polynomial with nodes O and 1.
Concerning H,(f, x) we now state the following theorem.
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THEOREM 2. Let f, C®0, 1] and let H,|f, x| satisfy (1.13). Then for
o0<x«K1,

HP(f, )~ [P <u max ([P0 p=0, 1.5, (1.14)

where

u= max [fOx), filx)= (1 =x)’ 43571 = x)" + x(1 —x)

0<x<1 6!

(1.15)

Note. If we denote ¢, = maxy, ., |/ (x)| then

1
_" cp+2:ap’ P:‘—O, 1’2’3’

11 1 B

“=Cre O

0| —

where a, are defined by (1.3).
Similarly let £ € C®[0, 1]. We denote by H,|f, x| the unique polynomial
of degree <7 satisfying the conditions

HP(fix)=fP(x), p=0234 i=01 (1.16)

with x, =0, x, = L.
Concerning H,|f, x| we shall prove the following:

THEOREM 3. Let f€ C*|0, 1| and H,|f, x| be the unique polynomial of
degree <7 satisfying (1.16). Then

ngp){f’x] —f(p)(x)| LUy Or?ai(l lf(lp)(x)L p:O, 1,..., 7, (1'17)
w= max |7 ),
£ix) = (=% +2/5) X1 —x) + X (1 =x*)/5 + x(1 = x)/5 L (L18)

8!

Note. If d,=max, ., |/{”(x)}, then it can be verified that

93 1 1y 1
d = |l ], = |l—==
0 (1280)8! d (5)8!
d,,»=8,, p=0, 1., 5, where the 8, are defined by (1.5). We denote by
k,[f, x| the unique polynomial of degree <3 satisfying

kilf,01=700),  Klfs 1] =S,

(1.19)
kIA2=70G), KlAI=G)

640/38/3 5
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We shall refer to k,[f,x] as quasi-Hermite interpolation polynomials.
Concerning k[ f, x|, we shall prove the following

THEOREM 4. Let f € C*|0, 1], let k,|f, x] be the unique polynomial of
degree <3 satisfying (1.19). Then we have, for p=0,1,2, 3,

€2 @) =17 6x) = kP (£ x]| <y, max /D), (1.20)

where

1 1 5 ]
= — e = — = —-. 1.2
=536 Togr R V3 (1.21)

Furthermore, these constants are best possible as can be verified by choosing

Fx) = x(1 —x)9(61 — 2x) .

It seems that the following conjecture concerning (1.1) may be worth
mentioning. Let f € C*"[0, k]| and v,,_,(x) be the unique Hermite inter-
polation polynomial of degree <2m — 1 matching u and its first m — 1
derivatives 4’ at 0 and h. Then

|u'P(x) — o) (x)| S uh®™P Jmax /P, p=0, 1., (2m—1),
SXS

where

h — m
= e gy =G

The above conjecture is true for m=2, and m = 3. For other related
interesting results, see [2].

2. PRELIMINARIES

Let us denote by L,, ,(#,x) the interpolation polynomial of degree
<2m — 1 satisfying the conditions

LEP (u,0)=u"(0), L3 (u, 1)=u*"(1), p=01,.,m—1
‘ 2.1
The explicit formula for L,,,_,(x) is given by

1

[u(Zi)(l)Ai(x) +u?0) 4,1 — x)|, (2.2)

LZm l(u X) _:

i=0



TWO POINT BIRKHOFF INTERPOLATION 263

where

2 (1 +x)

GiBun s for i>1 (2.3)

A, x)=

Here B,(x) denote the well known Bernoulli polynomials:

Byx)= N (Z >xk3",k, (2.4)
k=0
\" I
B= N\ (k)Bk, B, = 1. (2.5)
k=0

From the properties of Bernoullis polynomials it follows that
Al (x)=4,_(x), 4,0)=0, 4,(1)=0, i21, 4dx)=x. (2.6)
Since L,,,_,(u,x)=u(x) for u(x)En,,,_., (n,,_, denotes the class of

polynomials of degree {2m — 1) it follows from the Peano theorem that for
u € C™|0, 1)

~1

e(x) = u(x) — Loy _,(#, x) = 10 G px, ) u ™ () dl, (2.7)

where G, (x, t) is the Peano-kernel. Following Widder {5], we have

1
Gults )= G,(x. )Gy (1 0)dy,  m=2,3,., (2.8)

‘0

where G,(x, t) is defined by (1.8).

3. PROOF OF THEOREM 1

Following the notation used by Birkhoff and Priver [1], we shall denote

849G, (x, 1)

G5 1) =~ o7

Now on using (2.7) we have

-1
e (x)=u(x) — LY (u,x)= _;0 G¥ %, yu(t)ydt.  (3.1)
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Let us substitute u(x) = Q,,(x) (as defined by (1.6)) in (3.1) and use various
properties of Q,,(x) as stated in (1.9), we then obtained

D)= (1) Qo) = ()" | GFVx0d (32)

Also from (2.8) and (1.8) it follows that (—1)" G,(x, t) is nonnegative in the
unit square 0 < x < 1, 0 ¢t < 1. Further, from (2.8) it also follows that
GO ) =Gy (x,1); GO, 1) =G, _y(x,10). (3.3)

Therefore (—1)"~ G (x, )= (=1)"" G,,_;(x,1) > 0, in the unit square
0<x< 1, 0t 1. Hence, on using (3.1), (3.3) it follows that

> 1 . l .
le® (x)| < u j |GHO, D dt=u | | G},,Z"O’(x,t)dtl
0 Y0

= uQ2m12j(x)'

This proves (1.11). Next, we turn to prove (1.12). Due to (3.3) it is enough
to prove (1.12) for j = 1. From (2.8) it follows that

x 1
G:nl’O)(x, t)=J0 me—l(y’ [)dy+[ (y_ 1)Gm—l(-y’ t)dy

Therefore
1 1 .x
(16000 ar <[ [ 91Gu_ (v, 0ldydr
0 0 -0
1 .1
+[ [ A=0IGu s oldydr  (3.4)
0 “x
From (3.2) we know that

Qs 1) = [ |G (0 )] db. (3.5)

Yo

On changing the order of integration in (3.4) and making use of (3.5) we
obtain

[ 1680 01 d <[ 90 a(0)dy+ [ (1= 3) Qun ()

= am_2(X). (3.6)
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Now, we note that (on using (1.9))

fan 0 == [ 30L()dy = [ (1= ) Q) dy

=(=2x+ 1) Q3,(x) + 20, (x). (3.7)
Also
Xom—2(x) = (1 = 2x) Q7 (x) = (=1 + 2x) Q,,,, _(x)-

Since Q,,, ,(x) vanishes only at x =0 and x = 1, it follows that the critical
points of x,,, ,(x) are x =0, x=1, x=13. Also x,,,_»(1) = x2m_»(0) and

im0 =t D= @1 Qo (51 >0

Thus we conclude that yx,,_,{(x) has an absolute maximum at x=0 and
x = 1. Therefore, from (3.6) and (2.7) it follows that

1
e’ < | |G, 1) dt o o)
0

= [(1 = 2x) @3m(x) + 2Q,m(x) Ju
< uXvaz(l)'

But from (3.7} it follows that

" () < txam—o(1) = —uQ3,(1) = uQ3,(0).

This proves (1.12) completely.

The inequalities (1.11) and (1.12) are both best possible. To show this,
take u(x) = Q,,,(x), the Euler polynomial defined by (1.6) and (1.7). In view
of (1.9), we have maxy .., |u*"(x)|=1. Further use of (1.9) and the
definition of L,, ,(u(t),x) given by (1.10) shows at once that
Lyp_1[@:m(), x]=0. Now it is easy to verify that (1.11) is indeed best
possible pointwise. A similar argument shows that (1.12) is also best
possible. Here again we use the same choice of u(x), namely, @,,,(x).

4. PROOF OF THEOREM 2

Let /'€ C®[0,1] and H,|f, x| be the unique polynomial of degree <5
satisfying (1.13). We set

e(x) = f(x) — Hsf, x], (4.1)
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and note that

e”(0)=0, e”(1)=0, p=0,2,3. 4.2)
Thus e(x) can be looked upon as the solution of the differential equation

& —ow=row (43)

subject to the boundary conditions
yP0)= yP(1)=0, r=0,2,3. 4.4)

We may express (4.3), (4.4) as

dy _
de —X(X), (45)
y(©0)=0, y(1)=0
and
% _
dx4 - Q(x)’ (46)
x(0)=x(1)=x'(0)=x'(1)=0.
From (4.5) it follows that
Y= [ Gx,2) 2(2) (@.7)

where the G,(x, z) is Green’s function defined by (1.8). Also, the solution of
(4.6) is known from the work of Birkhoff and Priver [1]. It is given by

1
X0 =] Gk 0o (48)
where
6G,(x, )= (3t —26) x® + 3(t — 2) *x* + 3t>x — £, < x,
=3 =28 - 1) x4+ 3(1 —1)? tx?, (> x.
(4.9)
Therefore,

y(x) = jol G(x, ) O(t) dt = jol Glx, ) S O(0) dt, (4.10)
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where

G(x, 1) = j "G 2) Gz, 1) dz. (4.11)

Since G,(x, z) and G,(z, t) do not change sign, it follows that G(x, f) is non-
negative in the unit square 0 < x< 1, 0 ¢t< 1. Now, using a familiar
argument, it follows that

G*O(x, 1) = Gy(x, 1) (4.12)
and

GUT20x, 1)y = GV(x, 1), [1=0,1,2,3. (4.13)
From the known results of [1],

1
max j GO, ) dt=a,, [=0,1,2,3. (4.14)
0

0<xgt

From (4.13) and (4.14), (1.14) follows for p =2, 3,4, 5. Thus it remains to
prove (1.14) for p=1. For this purpose we need to compute max,. .,
{8]G9(x, 1)| dt. On using (4.11) we obtain

x 1
GH =] YGnOdy+ | (=1 G0,

Therefore

x 1
|GUD(x, 1) < L VG (y, 0)dy + f (I =Gy, ) dy
and we know

yi(1 ﬂy)z_

1
J, 16l d ==

Thus we can write
! x 3(1_y)2 ! (1—y)3y2
G < =2 T —— =
L | (x, 1) dt < L ] dy L ai dy = 6(x).

But

(1—-x)*Qx—1)

X
9’ (x) = -
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Thus &(x) has only three critical points: x=0, x=1, x=1/2. Since
6(1) > 6(1/2) it follows that

1
max j |G (x, 1)) dt <

o<x<t Jy V=170

jl y(a-y? 1
0 4!

This proves (1.14) for p=1 as well. Proof of Theorem 3 is very similar to
the proof of Theorem 2 we will not give any details. Proof of Theorem 4 can
be given on the lines of Theorem A so we will not give the details.
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