Best Error Bounds for Derivatives in Two Point Birkhoff Interpolation Problems

a. K. Varma and Gary Howell
Department of Mathematics, University of Florida, Gainesville, Florida 32611, U.S.A.
Communicated by Oved Shisha

Received January 29, 1982; revised September 27, 1982

Introduction

Let $u \in C^{2 m}[0, h]$ be given, let $v_{2 m-1}$ be the unique Hermite interpolation polynomial of degree $2 m-1$ matching u and its first $m-1$ derivatives $u^{(j)}$ at 0 and h and let $e=v_{2 m-1}-u$ be the error. Ciarlet et al. [3, Theorem 9] have obtained pointwise bounds on the error $e(x)$ and its derivatives in terms of $U=\max _{0 \leqslant x \leqslant h}\left|u^{(2 m)}(x)\right|$. Their bounds are

$$
\begin{equation*}
\left|e^{(k)}(x)\right| \leqslant \frac{h^{k}(x(h-x))^{m-k} U}{k!(2 m-2 k)!}, \quad k=0,1, \ldots, m ; \quad 0 \leqslant x \leqslant h . \tag{1.1}
\end{equation*}
$$

These bounds are best possible for $k=0$ only. Later, in 1967, Birkhoff and Priver [1] obtained, for $m=2$ and $m=3$, optimal error bounds on the derivatives $e^{(k)}(x)$. More precisely, their results can be described by the following

Theorem A. Let $u(x) \in C^{4}[0, h]$. Then

$$
\begin{equation*}
\left|v_{3}^{(k)}(x)-u^{(k)}(x)\right| \leqslant \alpha_{k} h^{4-k} \max _{0 \leqslant x \leqslant h}\left|u^{(4)}(x)\right|, \quad k=0,1,2,3, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{0}=\frac{1}{4^{2} 4!}, \quad \alpha_{1}=\frac{\sqrt{3}}{216}, \quad \alpha_{2}=\frac{1}{12}, \quad \alpha_{3}=\frac{1}{2} . \tag{1.3}
\end{equation*}
$$

Further, for $u(x) \in C^{6}[0, h]$, we have

$$
\begin{equation*}
\left|v_{s}^{(k)}(x)-u^{(k)}(x)\right| \leqslant \beta_{k} h^{6-k} \max _{0 \leqslant x \leqslant h}\left|u^{(6)}(x)\right|, \tag{1.4}
\end{equation*}
$$

where

$$
\begin{array}{lll}
\beta_{0}=\frac{1}{4^{3} 6!}, & \beta_{1}=\frac{\sqrt{5}}{30000}, & \beta_{2}=\frac{1}{1920}, \\
\beta_{3}=\frac{1}{120}, & \beta_{4}=\frac{1}{10}, & \beta_{5}=\frac{1}{2} . \tag{1.5}
\end{array}
$$

Here $v_{3}(x)$ and $v_{5}(x)$ are Hermite interpolation polynomials of degree $\leqslant 3$ and of degree $\leqslant 5$, respectively.

They also noted that, for $m>3$, their method, using Green's function, seems unlikely to be useful. Analogously to using Hermite interpolation polynomials, one may choose to approximate a given function $u(x) \in$ $C^{2 m}[0, h]$ by the so called Lidstone interpolation polynomial (see [4, p. 28]) $L_{2 m-1}(x)$ of degree $\leqslant 2 m-1$, matching u and its first $m-1$ even derivatives $u^{(2 j)}$ at 0 and h. It turns out that in this case we can give pointwise bounds on the error and its derivatives in terms of $u=\max _{0 \leqslant x \leqslant h}\left|u^{(2 m)}(x)\right|$ which are also optimal. An important role in our Theorem 1 (see below) is played by the polynomial $Q_{2 m}(x)$ (Euler polynomial) of degree $2 m$ given by the formula

$$
\begin{equation*}
Q_{2 m}(x)=-\int_{0}^{1} G_{1}(x, t) Q_{2 m-2}(t) d t, \quad m=1,2, \ldots \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{0}(x)=-1 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{align*}
G_{1}(x, t) & =t(x-1), \\
& =x(t-1),
\end{align*} \quad \begin{array}{ll}
0 \leqslant t<x \leqslant 1 \tag{1.8}\\
& 0 \leqslant t \leqslant 1 .
\end{array}
$$

Clearly from (1.6)-(1.8) it follows that

$$
Q_{2 n}^{\prime \prime}(x)=-Q_{2 n-2}(x), \quad Q_{2 n}(0)=Q_{2 n}(1)=0
$$

Also

$$
\begin{align*}
& Q_{2 n}^{(2 p)}(0)=Q_{2 n}^{(2 p)}(1)=0, \quad p=0,1, \ldots, n-1 \\
& Q_{2 n}^{(2 n)}(1)=Q_{2 n}^{(2 n)}(0)=(-1)^{n}, \\
& Q_{2 n}^{(2 j)}(x)=(-1)^{j} Q_{2 n-2 j}(x) \tag{1.9}
\end{align*}
$$

Explicit representation of some of these polynomials is given by

$$
\begin{aligned}
& Q_{2}(x)=\frac{x(1-x)}{2!}, \quad Q_{4}(x)=\frac{x^{2}(1-x)^{2}+x(1-x)}{4!} \\
& Q_{6}(x)=\frac{x^{3}(1-x)^{3}+3 x^{2}(1-x)^{2}+3 x(1-x)}{6!} \\
& Q_{8}(x)=\frac{x^{4}(1-x)^{4}+6 x^{3}(1-x)^{3}+17 x^{2}(1-x)^{2}+17 x(1-x)}{8!}
\end{aligned}
$$

We now state our first result as follows.
Theorem 1. Let $u(x) \in C^{2 m}[0,1]$, let $L_{2 m-1}(u, x)=L_{2 m-1}(x)$ be the unique polynomial of degree $\leqslant 2 m-1$ satisfying the conditions

$$
\begin{equation*}
L_{2 m-1}^{(2 j)}(0)=u^{(2 j)}(0), \quad L_{2 m-1}^{(2 j)}(1)=u^{(2 j)}(1), \quad j=0,1, \ldots, m-1 \tag{1.10}
\end{equation*}
$$

Then, for $0 \leqslant x \leqslant 1$, with $u=\max _{0 \leqslant x \leqslant 1}\left|u^{(2 m)}(x)\right|$,

$$
\begin{equation*}
\left|u^{(2 j)}(x)-L_{2 m-1}^{(2 j)}(x)\right| \leqslant u Q_{2 m-2 j}(x), \quad j=0,1, \ldots, m-1 \tag{1.11}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|u^{(2 j-1)}(x)-L_{2 m-1}^{(2 j-1)}(x)\right| \\
& \quad \leqslant u\left[(1-2 x) Q_{2 m+2-2 j}^{\prime}(x)+2 Q_{2 m+2-2 j}\right] \\
& \quad \leqslant Q_{2 m+2-2 j}^{\prime}(0), \quad j=1,2, \ldots, m \tag{1.12}
\end{align*}
$$

Moreover (1.11) and (1.12) are best possible.
Note! For $j=0,(1.11)$ is implicitly contained in Theorem 1.1 and Theorem 2.1 of Widder [5].

Our next aim is to give some applications of Theorem A of Birkhoff and Priver to two point Birkhoff interpolation problems. For this purpose, let $f \in$ $C^{6}[0,1]$ and let $H_{5}[f, x]$ be the unique polynomial of degree $\leqslant 5$ satisfying the conditions

$$
\begin{equation*}
H_{5}^{(p)}\left(f, x_{i}\right)=f^{(p)}\left(x_{i}\right), \quad i=0,1, p=0,2,3 ; \quad x_{0}=0, x_{1}=1 \tag{1.13}
\end{equation*}
$$

we may call it the $(0,2,3)$ interpolation polynomial with nodes 0 and 1 . Concerning $H_{5}(f, x)$ we now state the following theorem.

Theorem 2. Let $f, C^{6}[0,1]$ and let $H_{5}[f, x]$ satisfy (1.13). Then for $0 \leqslant x \leqslant 1$,

$$
\begin{equation*}
\left|H_{5}^{(p)}(f, x)-f^{(p)}(x)\right| \leqslant u \max _{0 \leqslant x \leqslant 1}\left|f_{0}^{(p)}(x)\right|, \quad p=0,1, \ldots, 5 \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
u=\max _{0 \leqslant x \leqslant 1}\left|f^{(6)}(x)\right|, \quad f_{0}(x)=\frac{x^{3}(1-x)^{3}+\frac{1}{2} x^{2}(1-x)^{2}+\frac{1}{2} x(1-x)}{6!} \tag{1.15}
\end{equation*}
$$

Note. If we denote $c_{p}=\max _{0 \leqslant x \leqslant 1}\left|f_{0}^{(p)}(x)\right|$ then

$$
c_{0}=\frac{11}{64} \frac{1}{6!}, \quad c_{1}=\frac{1}{2} \frac{1}{6!}, \quad c_{p+2}=\alpha_{p}, \quad p=0,1,2,3,
$$

where α_{p} are defined by (1.3).
Similarly let $f \in C^{8}[0,1]$. We denote by $H_{7}[f, x]$ the unique polynomial of degree $\leqslant 7$ satisfying the conditions

$$
\begin{equation*}
H_{7}^{(p)}\left(f, x_{i}\right)=f^{(p)}\left(x_{i}\right), \quad p=0,2,3,4, \quad i=0,1 \tag{1.16}
\end{equation*}
$$

with $x_{0}=0, x_{1}=1$.
Concerning $H_{7}[f, x]$ we shall prove the following:
Theorem 3. Let $f \in C^{8}[0,1]$ and $H_{7}[f, x]$ be the unique polynomial of degree $\leqslant 7$ satisfying (1.16). Then

$$
\begin{gather*}
\left|H_{7}^{(p)}[f, x]-f^{(p)}(x)\right| \leqslant u_{1} \max _{0 \leqslant x \leqslant 1}\left|f_{1}^{(p)}(x)\right|, \quad p=0,1, \ldots, 7, \tag{1.17}\\
u_{1}=\max _{0 \leqslant x \leqslant 1}\left|f^{(8)}(x)\right|, \\
f_{1}(x)=\frac{x^{4}(1-x)^{4}+(2 / 5) x^{3}(1-x)^{3}+x^{2}\left(1-x^{2}\right) / 5+x(1-x) / 5}{8!} \tag{1.18}
\end{gather*}
$$

Note. If $d_{p}=\max _{0 \leqslant x \leqslant 1}\left|f_{1}^{(p)}(x)\right|$, then it can be verified that

$$
d_{0}=\left(\frac{93}{1280}\right) \frac{1}{8!}, \quad d_{1}=\left(\frac{1}{5}\right) \frac{1}{8!},
$$

$d_{p+2}=\beta_{p}, p=0,1, \ldots, 5$, where the β_{p} are defined by (1.5). We denote by $k_{3}[f, x]$ the unique polynomial of degree $\leqslant 3$ satisfying

$$
\begin{array}{ll}
k_{3}[f, 0 \mid=f(0), & k_{3}|f, 1|=f(1) \\
k_{3}\left[f, \frac{1}{2}\right]=f\left(\frac{1}{2}\right), & k_{3}^{\prime}\left[f, \frac{1}{2}\right]=f^{\prime}\left(\frac{1}{2}\right) \tag{1.19}
\end{array}
$$

We shall refer to $k_{3}[f, x]$ as quasi-Hermite interpolation polynomials. Concerning $k_{3}[f, x]$, we shall prove the following

Theorem 4. Let $f \in C^{4}[0,1]$, let $k_{3}[f, x]$ be the unique polynomial of degree $\leqslant 3$ satisfying (1.19). Then we have, for $p=0,1,2,3$,

$$
\begin{equation*}
\left|e^{(p)}(x)\right|=\left|f^{(p)}(x)-k_{3}^{(p)}[f, x]\right| \leqslant v_{p} \max _{0 \leqslant x \leqslant 1}\left|f^{(4)}(x)\right| \tag{1.20}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{0}=\frac{1}{1536}, \quad v_{1}=\frac{1}{96}, \quad v_{2}=\frac{5}{48}, \quad v_{3}=\frac{1}{2} \tag{1.21}
\end{equation*}
$$

Furthermore, these constants are best possible as can be verified by choosing

$$
f(x)=\frac{x(1-x)(1-2 x)^{2}}{96}
$$

It seems that the following conjecture concerning (1.1) may be worth mentioning. Let $f \in C^{2 m}[0, h]$ and $v_{2 m-1}(x)$ be the unique Hermite interpolation polynomial of degree $\leqslant 2 m-1$ matching u and its first $m-1$ derivatives $u^{(j)}$ at 0 and h. Then

$$
\left|u^{(p)}(x)-v_{2 m-1}^{(p)}(x)\right| \leqslant u h^{2 m-p} \max _{0 \leqslant x \leqslant h}\left|f_{2}^{(p)}(x)\right|, \quad p=0,1, \ldots,(2 m-1)
$$

where

$$
u=\max _{0 \leqslant x \leqslant h}\left|u^{2 m}(x)\right|, \quad f_{2}(x)=\frac{x^{m}(h-x)^{m}}{2 m!}
$$

The above conjecture is true for $m=2$, and $m=3$. For other related interesting results, see [2].

2. Preliminaries

Let us denote by $L_{2 m-1}(u, x)$ the interpolation polynomial of degree $\leqslant 2 m-1$ satisfying the conditions

$$
\begin{equation*}
L_{2 m-1}^{(2 p)}(u, 0)=u^{(2 p)}(0), \quad L_{2 m-1}^{(2 p)}(u, 1)=u^{(2 p)}(1), \quad p=0,1, \ldots, m-1 \tag{2.1}
\end{equation*}
$$

The explicit formula for $L_{2 m-1}(x)$ is given by

$$
\begin{equation*}
L_{2 m-1}(u, x)=\sum_{i=0}^{m-1}\left|u^{(2 i)}(1) \Delta_{i}(x)+u^{(2 i)}(0) \Delta_{i}(1-x)\right| \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{i}(x)=\frac{2^{2 i}}{(2 i+1)!} B_{2 i+1} \frac{(1+x)}{2}, \quad \text { for } \quad i \geqslant 1 \tag{2.3}
\end{equation*}
$$

Here $B_{n}(x)$ denote the well known Bernoulli polynomials:

$$
\begin{gather*}
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k} B_{n-k} \tag{2.4}\\
B_{l}=\sum_{k=0}^{l}\binom{l}{k} B_{k}, \quad B_{0}=1 . \tag{2.5}
\end{gather*}
$$

From the properties of Bernoullis polynomials it follows that

$$
\begin{equation*}
\Delta_{i}^{\prime \prime}(x)=\Delta_{i-1}(x), \quad \Delta_{i}(0)=0, \quad \Delta_{i}(1)=0, \quad i \geqslant 1, \quad \Delta_{0}(x)=x . \tag{2.6}
\end{equation*}
$$

Since $L_{2 m-1}(u, x) \equiv u(x)$ for $u(x) \in \pi_{2 m-1} \quad\left(\pi_{2 m-1}\right.$ denotes the class of polynomials of degree $\leqslant 2 m-1$) it follows from the Peano theorem that for $u \in C^{2 m}[0,1]$

$$
\begin{equation*}
e(x) \equiv u(x)-L_{2 m-1}(u, x)=\int_{0}^{1} G_{m}(x, t) u^{(2 m)}(t) d t \tag{2.7}
\end{equation*}
$$

where $G_{m}(x, t)$ is the Peano-kernel. Following Widder [5], we have

$$
\begin{equation*}
G_{m}(x, t)=\int_{0}^{1} G_{1}(x, y) G_{m-1}(y, t) d y, \quad m=2,3, \ldots \tag{2.8}
\end{equation*}
$$

where $G_{1}(x, t)$ is defined by (1.8).

3. Proof of Theorem 1

Following the notation used by Birkhoff and Priver [1], we shall denote

$$
G_{m}^{(i, j)}(x, t)=\frac{\partial^{i+i} G_{m}(x, t)}{\partial x^{i} \partial t^{j}}
$$

Now on using (2.7) we have

$$
\begin{equation*}
e^{(2 j)}(x)=u^{(2 j)}(x)-L_{2 m-1}^{(2 j)}(u, x)=\int_{0}^{1} G_{m}^{(2 j, 0)}(x, t) u^{2 m}(t) d t \tag{3.1}
\end{equation*}
$$

Let us substitute $u(x)=Q_{2 m}(x)$ (as defined by (1.6)) in (3.1) and use various properties of $Q_{2 m}(x)$ as stated in (1.9), we then obtained

$$
\begin{equation*}
Q_{2 m}^{(2 j)}(x)=(-1)^{j} Q_{2 m-2 j}(x)=(-1)^{m} \int_{0}^{1} G_{m}^{(2 j, 0)}(x, t) d t \tag{3.2}
\end{equation*}
$$

Also from (2.8) and (1.8) it follows that $(-1)^{n} G_{n}(x, t)$ is nonnegative in the unit square $0 \leqslant x \leqslant 1,0 \leqslant t \leqslant 1$. Further, from (2.8) it also follows that

$$
\begin{equation*}
G_{m}^{(2 j, 0)}(x, t)=G_{m-1}(x, t) ; \quad G_{m}^{(2 j, 0)}(x, t)=G_{m-j}(x, t) \tag{3.3}
\end{equation*}
$$

Therefore $(-1)^{m-j} G_{m}^{(2 j, 0)}(x, t)=(-1)^{m-j} G_{m-j}(x, t)>0$, in the unit square $0 \leqslant x \leqslant 1,0 \leqslant t \leqslant 1$. Hence, on using (3.1), (3.3) it follows that

$$
\begin{aligned}
\left|e^{(2 j)}(x)\right| & \leqslant u \int_{0}^{1}\left|G_{m}^{(2 j, 0)}(x, t)\right| d t=u\left|\int_{0}^{1} G_{m}^{(2 j, 0)}(x, t) d t\right| \\
& =u Q_{2 m-2 j}(x)
\end{aligned}
$$

This proves (1.11). Next, we turn to prove (1.12). Due to (3.3) it is enough to prove (1.12) for $j=1$. From (2.8) it follows that

$$
G_{m}^{(1,0)}(x, t)=\int_{0}^{x} y G_{m-1}(y, t) d y+\int_{x}^{1}(y-1) G_{m-1}(y, t) d y
$$

Therefore

$$
\begin{align*}
\int_{0}^{1}\left|G_{m}^{(1,0)}(x, t)\right| d t \leqslant & \int_{0}^{1} \int_{0}^{x} y\left|G_{m-1}(y, t)\right| d y d t \\
& +\int_{0}^{1} \int_{x}^{1}(1-y)\left|G_{m-1}(y, t)\right| d y d t \tag{3.4}
\end{align*}
$$

From (3.2) we know that

$$
\begin{equation*}
Q_{2 m-2}(y)=\int_{0}^{1}\left|G_{m-1}(y, t)\right| d t \tag{3.5}
\end{equation*}
$$

On changing the order of integration in (3.4) and making use of (3.5) we obtain

$$
\begin{align*}
\int_{0}^{1}\left|G_{m}^{(1,0)}(x, t)\right| d t & \leqslant \int_{0}^{x} y Q_{2 m-2}(y) d y+\int_{x}^{1}(1-y) Q_{2 m-2}(y) d y \\
& \equiv \chi_{2 m-2}(x) \tag{3.6}
\end{align*}
$$

Now, we note that (on using (1.9))

$$
\begin{align*}
\chi_{2 m-2}(x) & =-\int_{0}^{x} y Q_{2 m}^{\prime \prime}(y) d y-\int_{x}^{1}(1-y) Q_{2 m}^{\prime \prime}(y) d y \\
& =(-2 x+1) Q_{2 m}^{\prime}(x)+2 Q_{2 m}(x) \tag{3.7}
\end{align*}
$$

Also

$$
\chi_{2 m-2}^{\prime}(x)=(1-2 x) Q_{2 m}^{\prime \prime}(x)=(-1+2 x) Q_{2 m-2}(x)
$$

Since $Q_{2 m-2}(x)$ vanishes only at $x=0$ and $x=1$, it follows that the critical points of $\chi_{2 m-2}(x)$ are $x=0, x=1, x=\frac{1}{2}$. Also $\chi_{2 m-2}(1)=\chi_{2 m-2}(0)$ and

$$
\chi_{2 m-2}(1)-\chi_{2 m-2}\left(\frac{1}{2}\right)=\int_{1 / 2}^{1}(2 y-1) Q_{2 m-2}(y) d y>0
$$

Thus we conclude that $\chi_{2 m-2}(x)$ has an absolute maximum at $x=0$ and $x=1$. Therefore, from (3.6) and (2.7) it follows that

$$
\begin{aligned}
\left|e^{\prime}(x)\right| & \leqslant u \int_{0}^{1}\left|G_{m}^{(1,0)}(x, t)\right| d t \leqslant u \chi_{2 m-2}(x) \\
& =\left[(1-2 x) Q_{2 m}^{\prime}(x)+2 Q_{2 m}(x)\right] u \\
& \leqslant u \chi_{2 m-2}(1)
\end{aligned}
$$

But from (3.7) it follows that

$$
\left|e^{\prime}(x)\right| \leqslant u \chi_{2 m-2}(1)=-u Q_{2 m}^{\prime}(1)=u Q_{2 m}^{\prime}(0)
$$

This proves (1.12) completely.
The inequalities (1.11) and (1.12) are both best possible. To show this, take $u(x)=Q_{2 m}(x)$, the Euler polynomial defined by (1.6) and (1.7). In view of (1.9), we have $\max _{0 \leqslant x \leqslant 1}\left|u^{2 m}(x)\right|=1$. Further use of (1.9) and the definition of $L_{2 m-1}(u(t), x)$ given by (1.10) shows at once that $\left.L_{2 m-1} \mid Q_{2 m}(t), x\right] \equiv 0$. Now it is easy to verify that (1.11) is indeed best possible pointwise. A similar argument shows that (1.12) is also best possible. Here again we use the same choice of $u(x)$, namely, $Q_{2 m}(x)$.

4. Proof of Theorem 2

Let $f \in C^{6}[0,1]$ and $H_{5}[f, x]$ be the unique polynomial of degree $\leqslant 5$ satisfying (1.13). We set

$$
\begin{equation*}
\left.e(x)=f(x)-H_{5} \mid f, x\right] \tag{4.1}
\end{equation*}
$$

and note that

$$
\begin{equation*}
e^{(p)}(0)=0, \quad e^{(p)}(1)=0, \quad p=0,2,3 \tag{4.2}
\end{equation*}
$$

Thus $e(x)$ can be looked upon as the solution of the differential equation

$$
\begin{equation*}
\frac{d^{6} y}{d x^{6}}=Q(x) \equiv f^{(6)}(x) \tag{4.3}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
y^{(p)}(0)=y^{(p)}(1)=0, \quad p=0,2,3 . \tag{4.4}
\end{equation*}
$$

We may express (4.3), (4.4) as

$$
\begin{gather*}
\frac{d^{2} y}{d x^{2}}=\chi(x), \tag{4.5}\\
y(0)=0, \quad y(1)=0
\end{gather*}
$$

and

$$
\begin{align*}
& \frac{d^{4} \chi}{d x^{4}}=Q(x) \tag{4.6}\\
& \chi(0)=\chi(1)=\chi^{\prime}(0)=\chi^{\prime}(1)=0 .
\end{align*}
$$

From (4.5) it follows that

$$
\begin{equation*}
y(x)=\int_{0}^{1} G_{1}(x, z) \chi(z) d z \tag{4.7}
\end{equation*}
$$

where the $G_{1}(x, z)$ is Green's function defined by (1.8). Also, the solution of (4.6) is known from the work of Birkhoff and Priver [1]. It is given by

$$
\begin{equation*}
\chi(x)=\int_{0}^{1} G_{4}(x, t) Q(t) d t \tag{4.8}
\end{equation*}
$$

where

$$
\begin{align*}
6 G_{4}(x, t) & =\left(3 t^{2}-2 t^{3}\right) x^{3}+3(t-2) t^{2} x^{2}+3 t^{2} x-t^{3}, & & t \leqslant x, \\
& =\left(3 t^{2}-2 t^{3}-1\right) x^{3}+3(1-t)^{2} t x^{2}, & & t \geqslant x . \tag{4.9}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
y(x)=\int_{0}^{1} G(x, t) Q(t) d t=\int_{0}^{1} G(x, t) f^{(6)}(t) d t \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
G(x, t)=\int_{0}^{1} G_{1}(x, z) G_{4}(z, t) d z \tag{4.11}
\end{equation*}
$$

Since $G_{1}(x, z)$ and $G_{4}(z, t)$ do not change sign, it follows that $G(x, t)$ is nonnegative in the unit square $0 \leqslant x \leqslant 1,0 \leqslant t \leqslant 1$. Now, using a familiar argument, it follows that

$$
\begin{equation*}
G^{(2,0)}(x, t)=G_{4}(x, t) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{(l+2,0)}(x, t)=G^{(t, 0)}(x, t), \quad l=0,1,2,3 \tag{4.13}
\end{equation*}
$$

From the known results of $[1]$,

$$
\begin{equation*}
\max _{0 \leqslant x \leqslant 1} \int_{0}^{1}\left|G_{4}^{(t, 0)}(x, t)\right| d t=\alpha_{l}, \quad l=0,1,2,3 \tag{4.14}
\end{equation*}
$$

From (4.13) and (4.14), (1.14) follows for $p=2,3,4,5$. Thus it remains to prove (1.14) for $p=1$. For this purpose we need to compute $\max _{0 \leqslant x \leqslant 1}$ $\int_{0}^{1}\left|G^{(1,0)}(x, t)\right| d t$. On using (4.11) we obtain

$$
G^{(1,0)}(x, t)=\int_{0}^{x} y G_{4}(y, t) d y+\int_{x}^{1}(y-1) G_{4}(y, t) d y .
$$

Therefore

$$
\left|G^{(1,0)}(x, t)\right| \leqslant \int_{0}^{x} y\left|G_{4}(y, t)\right| d y+\int_{x}^{1}(1-y)\left|G_{4}(y, t)\right| d y
$$

and we know

$$
\int_{0}^{1}\left|G_{4}(y, t)\right| d t=\frac{y^{2}(1-y)^{2}}{4!}
$$

Thus we can write

$$
\int_{0}^{1}\left|G^{(1,0)}(x, t)\right| d t \leqslant \int_{0}^{x} \frac{y^{3}(1-y)^{2}}{4!} d y+\int_{x}^{1} \frac{(1-y)^{3} y^{2}}{4!} d y=\theta(x)
$$

But

$$
\theta^{\prime}(x)=\frac{x^{2}(1-x)^{2}(2 x-1)}{4!}
$$

Thus $\theta(x)$ has only three critical points: $x=0, x=1, x=1 / 2$. Since $\theta(1)>\theta(1 / 2)$ it follows that

$$
\max _{0 \leqslant x \leqslant 1} \int_{0}^{1}\left|G^{(1,0)}(x, t)\right| d t \leqslant \int_{0}^{1} \frac{y^{3}(1-y)^{2}}{4!} d y=\frac{1}{1440}
$$

This proves (1.14) for $p=1$ as well. Proof of Theorem 3 is very similar to the proof of Theorem 2 we will not give any details. Proof of Theorem 4 can be given on the lines of Theorem A so we will not give the details.

Acknowledgment

The authors are very grateful to the referee for valuable suggestions.

References

1. G. Birkhoff and A. Priver, Hermite interpolation errors for derivatives, J. Math. Phys. 46 (1967), 440-447.
2. G. Birkhoff and de Boor, Error bounds for spline interpolation, J. Math. Mech. 13 (1964), 827-835.
3. P. G. Ciarlet, M. H. Schultz, and R. S. Varga, Numerical methods of high-order accuracy, Numer. Math. 9 (1967), 394-430.
4. P. J. Davis, Interpolation and Approximation, Ginn (Blaisdell), Boston, 1961.
5. D. V. Widder, Completely convex functions and Lidstone series, Trans. Amer. Math. Soc. 51 (1942), 387-398.
